Abstract

High-dimensional quantum key distribution (QKD) offers the possibility of encoding multiple bits of key on a single entangled photon pair. An experimentally promising approach to realizing this is to use energy–time entanglement. Currently, however, the control of very high-dimensional entangled photons is challenging. We present a simple and experimentally compact approach, which is based on a cavity that allows one to measure two different bases: the time of arrival and another that is approximately mutually unbiased to the arrival time. We quantify the errors in the setup, due both to the approximate nature of the mutually unbiased measurement and as a result of experimental errors. It is shown that the protocol can be adapted using a cut-off so that it is robust against the considered errors, even within the regime of up to 10 bits per photon pair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call