Abstract
The authors present an analytical derivation of the scattered power from a spherical, homogeneous, nonabsorbing particle in a plane standing wave. The scattered power changes significantly with the position of the particle with respect to the peaks and nodes of the standing wave, even for particles whose diameters are many times the wavelength of the light. The analysis is applicable to continuous-wave cavity ring-down spectroscopy on aerosol particles, and the structure of the standing wave is expected to affect both the measured ring-down time and the shape of the ring-down trace. The dependence of the extinction on the phase of the standing wave at the location of the particle is captured in a parameter zeta which connects the current treatment to standard Mie scattering theory. Methods for calculating zeta are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.