Abstract
Coherent interfaces between optical photons and long-lived matter qubits form a key resource for a broad range of quantum technologies. Cavity quantum electrodynamics (cQED) offers a route to achieve such an interface by enhancing interactions between cavity-confined photons and individual emitters. Over the last two decades, a promising new class of emitters based on defect centers in diamond has emerged, combining long spin coherence times with atom-like optical transitions. More recently, advances in optical resonator technologies have made it feasible to realize cQED in diamond. This article reviews progress towards coupling color centers in diamond to optical resonators, focusing on approaches compatible with quantum networks. We consider the challenges for cQED with solid-state emitters and introduce the relevant properties of diamond defect centers before examining two qualitatively different resonator designs: micrometer-scale Fabry–Perot cavities and diamond nanophotonic cavities. For each approach, we examine the underlying theory and fabrication, discuss strengths and outstanding challenges, and highlight state-of-the-art experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.