Abstract
We present numerical simulations of the cavity optomechanical detection of persistent currents and bright solitons in an atomic Bose-Einstein condensate confined in a ring trap. This paper describes a technique that measures condensate rotation , in real time, and with minimal destruction, in contrast to currently used methods, all of which destroy the condensate completely. For weakly repulsive interatomic interactions, the analysis of persistent currents extends our previous few-mode treatment of the condensate [P. Kumar ] to a stochastic Gross-Pitaevskii simulation. For weakly attractive atomic interactions, we present the first analysis of optomechanical detection of matter-wave soliton motion. We provide optical cavity transmission spectra containing signatures of the condensate rotation, sensitivity as a function of the system response frequency, and atomic density profiles quantifying the effect of the measurement backaction on the condensate. We treat the atoms at a mean-field level and the optical field classically, account for damping and noise in both degrees of freedom, and investigate the linear as well as nonlinear response of the configuration. Our results are consequential for the characterization of rotating matter waves in studies of atomtronics, superfluid hydrodynamics, and matter-wave soliton interferometry. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.