Abstract

A key step in the use of diamond nitrogen vacancy (NV) centers for quantum computational tasks is a single shot quantum non-demolition measurement of the electronic spin state. Here, we propose a high fidelity measurement of the ground state spin of a single NV center, using the effects of cavity quantum electrodynamics. The scheme we propose is based in the one-dimensional atom or Purcell regime, removing the need for high Q cavities that are challenging to fabricate. The ground state spin of the NV center has a splitting of ≈6–10 μeV, which can be resolved in a high-resolution absorption measurement. By incorporating the center in a low-Q and low volume cavity we show that it is possible to perform single shot readout of the ground state spin using a weak laser with an error rate of ≈7×10−3, when realistic experimental parameters are considered. Since very low levels of light are used to probe the state of the spin we limit the number of florescence cycles, which dramatically reduces the measurement induced decoherence approximating a non-demolition measurement of ground state spin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.