Abstract

A cavity-enhanced Raman spectroscopy (CERS) gas-sensing method is introduced. Using optical feedback frequency-locking, laser radiation provided by a diode laser is coupled into a three-mirror V-shaped optical cavity. An intracavity laser power of 92 W is realized, yielding a power gain factor of 2200. Raman spectrums of air, carbon dioxide, and acetylene are recorded as a demonstration. Multicomponent gas mixtures including isotopic gases can be simultaneously sensed by CERS. With 200 s exposure time, detection limits of 5.35 Pa for N2, 5.07 Pa for O2, 1.74 Pa for CO2, and 0.58 Pa for C2H2 are achieved. CERS is a powerful gas-sensing method with high selectivity and sensitivity, which also has the potential for quantitative analysis of gases with high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call