Abstract

A novel method for the generation of high-energy ultrashort optical pulses is described and studied theoretically and numerically. Through the combination of parametric amplification and enhancement cavities, this method opens a route to generate few-cycle pulses at unprecedented average power levels through the use of a low-energy, high average-power pump source and energy storage in the enhancement cavity. Dispersion in the enhancement cavity ceases to be a concern with the use of long pump pulses. Limitations set by the Kerr nonlinearity of the amplifier crystal are analyzed, and ways to overcome them using self-defocusing nonlinearities are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.