Abstract

Cavity-enhanced absorption spectroscopy (CEAS) has generated much interest in shocktube kinetics studies because of its recent success in achieving improved sensitivity and high time resolution with robust optical alignment. While recent progress demonstrated experimental schemes including off-axis scanned-wavelength approach and on-axis ps-pulsed laser approach, that both successfully suppressed the laser-cavity coupling noise, this paper develops a theoretical model to predict the CEAS sensor performance that can be used as a design tool applicable to more generalized cases. The method models the optical field in the cavity based on the decentered Gaussian beam model, from which the cavity transmission spectrum and the laser-cavity coupling noise can be numerically calculated. The simulation results predict sensor performance for different cavity configurations and laser characteristics, including various degrees of laser-cavity mode-matching, laser linewidths, scanning rates, and cavity filling conditions. Simulation with example wavelengths in the ultraviolet, near-infrared, and mid-infrared showed increasing mode-matched beam waist size for increasing wavelengths. An off-axis alignment scheme was found to be capable of suppressing the coupling noise by two orders-of-magnitude at a moderate laser linewidth of 1 GHz. Coupling noise level on the order of 1e-5 for scanned-wavelength off-axis alignment case with a narrowband mid-infrared laser was obtained by model calculation and agreed with experimental results within acceptable uncertainty range. The developed method can serve to guide future design and optimization of CEAS system in shocktube studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call