Abstract
The successful development and application in industry of methanol-to-olefins (MTO) process brought about an innovative and efficient route for olefin production via non-petrochemical resources and also attracted attention of C1 chemistry and zeolite catalysis. Molecular sieve catalysts with diversified microenvironments embedding unique channel/cavity structure and acid properties, exhibit demonstrable features and advantages in the shape-selective catalysis of MTO. Especially, shape-selective catalysis over 8-MR and cavity-type zeolites with acidic supercage environment and narrow pore opening manifested special host-guest interaction between the zeolite catalyst and guest reactants, intermediates and products. This caused great differences in product distribution, catalyst deactivation and molecular diffusion, revealing the cavity-controlled methanol conversion over 8-MR and cavity-type zeolite catalyst. Furthermore, the dynamic and complicated cross-talk behaviors of catalyst material (coke)-reaction-diffusion over these types of zeolites determines the catalytic performance of the methanol conversion. In this review, we shed light on the cavity-controlled principle in the MTO reaction including cavity-controlled active intermediates formation, cavity-controlled reaction routes with the involvement of these intermediates in the complex reaction network, cavity-controlled catalyst deactivation and cavity-controlled diffusion. All these were exhibited by the MTO reaction performances and product selectivity over 8-MR and cavity-type zeolite catalysts. Advanced strategies inspired by the cavity-controlled principle were developed, providing great promise for the optimization and precise control of MTO process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.