Abstract

The pseudospin of heavy-holes (HHs) confined in a semiconductor quantum dot (QD) represents a promising candidate for a fast and robust qubit. While hole spin manipulation by a classical electric field utilizing the Dresselhaus spin-orbit interaction (SOI) has been demonstrated, our work explores cavity-based qubit manipulation and coupling schemes for inversion-symmetric crystals forming a planar HH QD. Choosing the exemplary material Germanium (Ge), we derive an effective cavity-mediated ground state spin coupling that harnesses the cubic Rashba SOI. In addition, we propose an optimal set of parameters which allows for Rabi frequencies in the MHz range, thus entering the strong coupling regime of cavity quantum electrodynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call