Abstract

The photon emission into different spatial directions of a quantum dot in a micropillar cavity is theoretically analyzed. We propose two types of photon emission statistics from a single quantum light device: (i) single photon emission into the axial, strong coupling direction and a two-photon emission into the lateral, weak coupling direction, as well as (ii) the simultaneous use of both emission directions for the temporally ordered generation of two photons within a defined time-bin constituting a heralded single photon source. Our results open up exciting perspectives for solid state based quantum light sources, which can be generalized to any quantum emitter-microcavity system featuring spatially distinct emission channels between the resonator and unconfined modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call