Abstract

Abstract Cavitation is a complicated phenomenon in the centrifugal pump. In this work, the improved unsteady calculation model based on bubble-rotation-based Zwart–Gerber–Belamri (BRZGB) cavitation model is used to investigate the cavitation-vortex-pressure fluctuation interaction in a centrifugal pump under partial load with experimental validation. Spatial–temporal evolution of cavitation can be classified into three stages: developing stage, shedding stage, and collapsing stage. The cavitation evolution period is found as 1/4T (T is impeller rotation period), corresponding to the frequency 4fi (fi is impeller rotation frequency). On the analysis of the relative vorticity transport equation, it is revealed that the cavity is stretched by the relative vortex stretching term (RVS) and developed by the relative vortex dilation term (RVD), and they have great influence on the cavity shedding. The peak value of pressure fluctuation intensity occurs near the vapor–liquid interface at cavity rear, and shifts downstream with the cavitation development. The hysteresis between the vapor volume fraction, vorticity, and pressure fluctuation is observed, and the variation of vapor volume fraction is the source of cavitation-vortex-pressure interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call