Abstract

WC-Cr3C2-Ni coatings are a vital class of hard ceramic/cermet coatings with potential applications as wear-resistant materials. However, their erosion wear behavior in 3.5 wt.% sodium chloride medium (SCM) remains largely unexplored. The present study investigated the cavitation–silt erosion (CSE) behavior in 3.5 wt.% SCM of WC-Cr3C2-Ni coatings sprayed with high-velocity oxygen–fuel (HVOF) under different flow velocities (FVs) and sand concentrations (SCs). Comparing the WC-Cr3C2-Ni coating with the 1Cr18Ni9Ti stainless steel, the first possessed superior CSE resistance in 3.5 wt.% SCM in a full range of FV and SC. Meanwhile, the coating appeared more influenced by FV and less influenced by SC, which was indicated by the fact that the amplification of VLR value (377.1%) when the FV ranged from 23.4 to 41.9 m·s−1 was larger than that (129.8%) when the SC increased from 10 kg·m−3 to 35 kg·m−3. With increasing FV and SC, the CSE process of the WC-Cr3C2-Ni coating in 3.5 wt.% SCM mainly included the discontinuous corrosion product films, erosion pits, fracturing of hard-phase grains, and micro-cutting of soft binder matrix, as well as crater formation and coating spalling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call