Abstract

Cavitation instability in rubber is investigated by examining spherical void expansion in rubber particles under dead-load traction conditions. Spherical symmetry is assumed to simplify the governing equations in order to gain qualitative understanding of cavitation phenomenon. A simple strain failure criterion for rubber is proposed to demonstrate the effect of rubber failure on cavitation phenomenon. When the strain failure criterion is considered, the results show that, as in neo-Hookean materials, critical cavitation stresses exist for Mooney-Rivlin materials and for nonlinearly elastic materials characterized by a third-order strain energy function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.