Abstract

To study the feasibility and efficacy of a combination of focused US and liposomal doxorubicin (US-L-DOX) release in orthotopic murine models of pancreatic cancer. A confocal US setup was developed to generate US inertial cavitation delivery in a controlled and reproducible manner and designed for two distinct murine orthotopic pancreatic cancer models. Controlled cavitation at 1 MHz was applied within the tumors after L-DOX injection according to a preliminary pharmacokinetic study. In vitro studies confirmed that L-DOX was cytostatic. In vivo pharmacokinetic study showed L-DOX peak tumor accumulation at 48h. Feasibility of L-DOX injection and US delivery was demonstrated in both murine models. In a nude mouse model, at W9 after implantation (W5 after treatment), US-L-DOX group (median [IQR] 51.43 mm3 [35.1-871.95]) exhibited significantly lower tumor volumes than the sham group (216.28 [96.12-1202.92]), the US group (359.44 [131.48-1649.25]), and the L-DOX group (255.94 [84.09-943.72]), and a trend, although not statistically significant, to a lower volume than Gemcitabine group (90.48 [42.14-367.78]). This study demonstrates that inertial cavitation can be generated to increase the therapeutic effect of drug-carrying liposomes accumulated in the tumor. This approach is potentially an important step towards a therapeutic application of cavitation-induced drug delivery in pancreatic cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.