Abstract

Blade element momentum theory (BEMT) is an analytical modelling tool that describes the performance of turbines by cross-referencing one-dimensional momentum theory with blade element theory. Each blade is discretised along its length and the dynamic properties of torque and axial force are determined. A compatible cavitation detection model is introduced to indicate any cavitating blade elements. Cavitation occurrence is dependent on proximity to the free surface, the incident flow velocity and inflow angle and the blade cross-section aerofoil shape. The shock waves associated with cavitation can significantly damage the blade surface and reduce performance; therefore, this model is a useful addition to BEMT and can be used in turbine design to minimise cavitation occurrence. The results are validated using the cavitation experiment observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.