Abstract

This paper comparatively investigates the cavitation erosion damage of two self-fluxing NiCrSiB hardfacings deposited via the oxy-acetylene powder welding method. Examinations were conducted according to the procedure given by ASTM G32 standard. In order to research cavitation erosion (CE), the vibratory apparatus was employed. The cavitation damaged surfaces were inspected using a scanning electron microscope, optical microscope and surface profilometer. The hardness of the A-NiCrSiB hardfacing equals 908HV while that of C-NiCrSiB amounts to 399HV. The research showed that the CE resistance of C-NiCrSiB is higher than that of A-NiCrSiB. The results demonstrate that in the case of multiphase materials, like the NiCrSiB hardfacings, hardness cannot be the key factor for cavitation erosion damage estimation whereas it is strongly subjected to material microstructure. In order to qualitatively recognise the cavitation erosion damage of the NiCrSiB self-fluxing hardfacings at a given exposure time, the following factors should be respected: physical and mechanical properties, material microstructure and also material loss and eroded surface morphology, both stated at specific testing time. The general idea for the cavitation erosion damage estimation of the NiCrSiB oxy-acetylene welds was presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.