Abstract

Kinetically trapped micelles are a novel platform for diverse emerging applications. However, their homogenization and reproducibility is inherently challenging due to the high-χN barrier toward chain exchange processes. Sonication enables switchable micelle exchange where cavitation leads to exchange and cessation returns micelles to kinetic entrapment. The mechanism was posited to be an agitation induced exchange process similar to recent developments with vortexing. This study reports the first SANS measurements of chain exchange during cavitation induced exchange (CIE). The mixed chain concentration progresses linearly with sonication time, analogous to vortexing. In contrast, the rate of CIE was directly proportional to the polymer concentration. This feature indicates that CIE uniquely overcomes the energetic barriers that reduce exchange rates with other methods. Furthermore, the linear progression with time and direct concentration dependence suggest that exchange is limited by the rate of micelle...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.