Abstract

Cavitation phenomenon is observed during deformation in many semicrystalline polymers above their glass transition temperature. Numerous voids (cavities) both nanometer and micrometer size are formed inside amorphous phase between lamellae during deformation of a polymer. The cavitation is observed only in tension, never during compression or shearing. Most often used methods of voids detection are: microscopies (SEM, TEM, AFM and light microscopy), small angle X-ray scattering and measurements of density. Usually the voids are detected close to yielding or at yielding, strongly suggesting that yielding is often caused by cavitation. However, there is a competition between two processes: breaking of amorphous phase leading to cavitation and plastic deformation of lamellar crystals. Which process occurs first depends on the relation between compliances of those two phases. If the crystals are weak and defected their deformation occurs (mostly by chain slips mechanism) without cavitation. If the crystals in a polymer are thick and more perfect then the barrier for their deformation, represented by shear yielding stress, is increased and the cavitation sets in first and yielding is determined by the stress needed for cavitation. Further deformation involves deformation of crystals due to rapid local change of stress around voids. The influence of different morphological factors: crystal thickness, crystallinity degree, arrangement of crystalline elements (e.g. in spherulites), morphology of amorphous phase (free volume, entanglements, tie molecules) were analyzed. Experimental factors, such as temperature of deformation and rate of deformation influence remarkably the formation of cavities. Cavitation is generated at points where a high local triaxial state of stress is developed. Triaxiality of stress can be amplified by a notch, even very mild notch with large radius of curvature stimulates generation of cavities. Evolution of nano-cavities into micro-cavities and change of their shapes with increasing deformation were evidenced by SAXS. Initially voids are oriented perpendicularly to deformation direction, however, with increasing elongation they become oriented along deformation direction. Stress whitening is visual sign of cavitation and is caused be light scattering either by microvoids or by assemblies of nanovoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call