Abstract
AbstractIntensified cavitation‐assisted biogas production from sustainable feedstock has been discussed describing the working principles and governing mechanisms for intensification. Various methods of biogas production discussed in the work include activated sludge processes, membrane bioreactor (MBR), and processes involving methanogenic and sulfate‐reducing microorganisms. Design aspects of cavitational reactors (sonochemical and hydrodynamic cavitation) have been presented with detailed understanding into effect of several operational parameters, such as the biomass‐to‐water ratio, operating pressure, treatment duration, operating temperature, power dissipation, and so on. Selection of optimum parameters is crucial to improve the performance and observed intensification from such processes. The possible benefits in terms of applicability to various types of biomass, efficiency, higher yields, and energy‐saving as compared to the conventional production processes have been demonstrated. Overall, cavitation‐assisted techniques are very effective in increasing biogas production and have significant potential for commercial applications, which would result in significant cost savings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.