Abstract

Abstract Background Pulmonary hypertension (PH) is a progressive disease associated with poor outcome. Caveolin-1 (Cav1) is a component of caveolae and classified as a related gene of pulmonary arterial hypertension (PAH). Gene mutations of bone morphogenetic protein type II receptor (BMPRII) is a most common cause of PAH. BMPRII is localized in caveolae and associates with Cav1. However, the role of the Caveolin-Cavin system on the BMP/Smad signaling and the PAH progression has not been well-known. Purpose The aim of our study is to investigate the relationship between Caveolin-Cavin system and BMP/Smad signaling pathway and explore the mechanism of downstream signal transduction of BMP signaling by the interaction between Caveolin and BMPRII. Methods Cav1 knockout mice were used to assess PH and caveolae in pulmonary artery endothelial cells were observed by electron microscope. Cav1 and Cavin-1, which is a component of caveolae and form a complex with Cav1, were knocked-down in human pulmonary artery endothelial cell (hPAEC) using siRNA and phosphorylation of Smad signal was evaluated. Apoptosis of these cells was explored by flow cytometry. We investigated the interaction between Cav1 and BMPRII, and evaluated whether Cavin-1 affects this interaction and signal transduction of BMP signaling. Results As previously described, deletion of Cav1 revealed disappearance of caveolae in pulmonary artery endothelial cells (PAECs), and Cav1 knockout mice exhibited PH with pulmonary vascular remodeling and right ventricular hypertrophy. We then examined roles of Cav1 in human PAECs (hPAECs). Cav1 knockdown in hPAECs reduced phosphorylation of Smad 1/5/9. In addition, Cav1 knockdown significantly increased hypoxia-induced apoptosis in hPAEC. Knockdown of Cavin-1 reversed phosphorylation of Smad 1/5/9 decreased by Cav1 knockdown in BMP9 stimulation. Cavin-1 reversed the expression of BMPRII decreased by overexpression of Cav1. Cav1 was associated with Cavin-1 at the plasma membrane in PAECs. Cav1 also associated with BMPRII at the membrane of hPAECs that was inhibited by Cavin-1, and Cavin-1 reduced the localization of BMPRII to the membrane of hPAECs. These results suggest that BMPRII interacts with Cav1 via Cavin-1-associated localization at the plasma membrane in hPAECs, resulting in regulating BMP/Smad signaling pathway and involving in the development of PAH. Conclusions Cavin-1 affects the interaction of Cav1 with BMPRII at the membrane of PAECs, and regulates BMP/Smad signaling. These results reveal a previously undescribed function of Cavin-Caveolin system in the development of PAH through regulation of BMP/Smad signaling. Funding Acknowledgement Type of funding source: None

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call