Abstract

Cellular senescence is a feature of most somatic cells. It is characterized by an irreversible cell cycle arrest and by the ability to secrete a plethora of mediators of inflammation and growth factors, which can alter the senescent cell's microenvironment. Senescent cells accumulate in tissues over time and contribute to both aging and the development of age-associated diseases. Senescent cells have antagonistic pleiotropic roles in cancer. Given the inability of senescent cells to proliferate, cellular senescence is a powerful tumor suppressor mechanism in young individuals. However, accumulation of senescent stromal cells during aging can fuel cancer cell growth in virtue of their capacity to release factors that stimulate cell proliferation. Caveolin-1 is a structural protein component of caveolae, invaginations of the plasma membrane involved in a variety of cellular processes, including signal transduction. Mounting evidence over the last 10-15years has demonstrated a central role of caveolin-1 in the development of a senescent phenotype and the regulation of both the anti-tumorigenic and pro-tumorigenic properties of cellular senescence. In this review, we discuss the cellular mechanisms and functions of caveolin-1 in the context of cellular senescence and their relevance to the biology of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call