Abstract

Emerging evidence suggests that extracellular vesicle (EV)-containing miRNAs mediate intercellular communications in response to noxious stimuli. It remains unclear how a cell selectively sorts the cellular miRNAs into EVs. We report that caveolin-1 (cav-1) is essential for sorting of selected miRNAs into microvesicles (MVs), a main type of EVs generated by outward budding of the plasma membrane. We found that cav-1 tyrosine 14 (Y14)-phosphorylation leads to interactions between cav-1 and hnRNPA2B1, an RNA-binding protein. The cav-1/hnRNPA2B1 complex subsequently traffics together into MVs. Oxidative stress induces O-GlcNAcylation of hnRNPA2B1, resulting in a robustly altered hnRNPA2B1-bound miRNA repertoire. Notably, cav-1 pY14 also promotes hnRNPA2B1 O-GlcNAcylation. Functionally, macrophages serve as the principal recipient of epithelial MVs in the lung. MV-containing cav-1/hnRNPA2B1 complex-bound miR-17/93 activate tissue macrophages. Collectively, cav-1 is the first identified membranous protein that directly guides RNA-binding protein into EVs. Our work delineates a novel mechanism by which oxidative stress compels epithelial cells to package and secrete specific miRNAs and elicits an innate immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.