Abstract
SummaryIdiopathic pulmonary fibrosis (IPF) is a life-threatening disease resulting from dysregulated repair responses to lung injury. Excessive extracellular matrix deposition by expanding myofibroblasts and fibrotic lung fibroblasts (fLfs) has been implicated in the pathogenesis of PF, including IPF. We explored fLfs' microRNA-34a (miR-34a) expression from IPF tissues. Basal miR-34a levels were decreased with reduced binding of p53 to the promoter DNA and 3′UTR mRNA sequences. Overexpression of miR-34a in fLfs increased p53, PAI-1, and reduced pro-fibrogenic markers. The regulatory effects of miR-34a were altered by modifying the p53 expression. Precursor-miR-34a lung transduction reduced bleomycin-induced PF in wild-type mice. fLfs treated with caveolin-1 scaffolding domain peptide (CSP) or its fragment, CSP7, restored miR-34a, p53, and PAI-1. CSP/CSP7 reduced PDGFR-β and pro-fibrogenic markers, which was abolished in fLfs following blockade of miR-34a expression. These peptides failed to resolve PF in mice lacking miR-34a in fLfs, indicating miR-34a-p53-feedback induction required for anti-fibrotic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.