Abstract

Caveolins (CAVs) regulate intracellular cholesterol transport by a complex process involving caveolae, endoplasmic reticulum (ER), and the Golgi network. Hepatic stellate cells (HSCs) are the central site for retinoid storage in the liver and indeed the entire body. Herein, we attempted to elucidate the ultrastructural localization and expression of caveolin-1 (CAV-1) in human HSCs during the progression of liver cirrhosis (LC). Normal and hepatitis C-related cirrhotic liver samples were prepared using a modified perfusion-fixation method to fix organelle structures and molecules in their in vivo positions, and examined using immunoelectron microscopy. In control liver specimens, CAV-1 was minimally associated with low electron density lipid droplets (LDs) segregated around zones 1―2, and specifically associated with membranes surrounding LDs. CAV-1 was segregated in high-density LDs, consistent with the formation of membrane-enclosed lipid-rich vesicular structures, as well as caveolae on plasma membranes around zones 2―3. In cirrhotic liver specimens, CAV-1 molecules were inserted into the cytoplasmic leaflets of ER membranes for transportation to LDs. Thus, CAV-1 transport to LDs might represent an intracellular pathway from the ER in cirrhotic liver tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.