Abstract

BackgroundCaveolae are involved in diverse cellular functions such as signal transduction, cholesterol homeostasis, endo- and transcytosis, and also may serve as entry sites for microorganisms. Hence, their occurrence in epithelium of the airways might be expected but, nonetheless, has not yet been examined.MethodsWestern blotting, real-time quantitative PCR analysis of abraded tracheal epithelium and laser-assisted microdissection combined with subsequent mRNA analysis were used to examine the expression of cav-1 and cav-2, two major caveolar coat proteins, in rat tracheal epithelium. Fluorescence immunohistochemistry was performed to locate caveolae and cav-1 and -2 in the airway epithelium of rats, mice and humans. Electron-microscopic analysis was used for the identification of caveolae. CLSM-FRET analysis determined the interaction of cav-1α and cav-2 in situ.ResultsWestern blotting and laser-assisted microdissection identified protein and transcripts, respectively, of cav-1 and cav-2 in airway epithelium. Real-time quantitative RT-PCR analysis of abraded tracheal epithelium revealed a higher expression of cav-2 than of cav-1. Immunoreactivities for cav-1 and for cav-2 were co-localized in the cell membrane of the basal cells and basolaterally in the ciliated epithelial cells of large airways of rat and human. However, no labeling for cav-1 or cav-2 was observed in the epithelial cells of small bronchi. Using conventional double-labeling indirect immunofluorescence combined with CLSM-FRET analysis, we detected an association of cav-1α and -2 in epithelial cells. The presence of caveolae was confirmed by electron microscopy. In contrast to human and rat, cav-1-immunoreactivity and caveolae were confined to basal cells in mice. Epithelial caveolae were absent in cav-1-deficient mice, implicating a requirement of this caveolar protein in epithelial caveolae formation.ConclusionThese results show that caveolae and caveolins are integral membrane components in basal and ciliated epithelial cells, indicating a crucial role in these cell types. In addition to their physiological role, they may be involved in airway infection.

Highlights

  • Caveolae are involved in diverse cellular functions such as signal transduction, cholesterol homeostasis, endo- and transcytosis, and may serve as entry sites for microorganisms

  • RT-PCR RT-PCR analysis of total mRNA isolated from rat lungs and abraded tracheal epithelial cells revealed expression of cav-1 and cav-2

  • Cav-1 and cav-2 were labeled using conventional indirect double-labeling immunofluorescence technique

Read more

Summary

Introduction

Caveolae are involved in diverse cellular functions such as signal transduction, cholesterol homeostasis, endo- and transcytosis, and may serve as entry sites for microorganisms. Their occurrence in epithelium of the airways might be expected but, has not yet been examined. Caveolae are omega-shaped invaginations of the plasma membrane measuring 50 to 100 nm in diameter. They are found in numerous cell types such as type I pneumocytes, endothelial cells, adipocytes, fibroblasts, smooth muscle cells, cardiac and striated muscle cells [1]. Caveolar formation is dependent on the expression of caveolins. Cav-1 is expressed in two isoforms, cav1α and cav-1β, exhibiting a cell type-specific distribution (endothelial vs. alveolar type-1 cells) in the alveolar region [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call