Abstract

Objective- This study examined whether caveolae position CaV3.2 (T-type Ca2+ channel encoded by the α-3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large-conductance Ca2+-activated K+ channel feedback. Approach and Results- Using smooth muscle cells from mouse mesenteric arteries, the proximity ligation assay confirmed that CaV3.2 reside within 40 nm of caveolin 1, a key caveolae protein. Methyl-β-cyclodextrin, a cholesterol depleting agent that disrupts caveolae, suppressed CaV3.2 activity along with large-conductance Ca2+-activated K+-mediated spontaneous transient outward currents in cells from C57BL/6 but not CaV3.2-/- mice. Genetic deletion of caveolin 1, a perturbation that prevents caveolae formation, also impaired spontaneous transient outward current production but did so without impairing Ca2+ channel activity, including CaV3.2. These observations indicate a mistargeting of CaV3.2 in caveolin 1-/- mice, a view supported by a loss of Ni2+-sensitive Ca2+ spark generation and colocalization signal (CaV3.2-RyR) from the proximity ligation assay. Vasomotor and membrane potential measurements confirmed that cellular disruption of the CaV3.2-RyR axis functionally impaired the ability of large-conductance Ca2+-activated K+ to set tone in pressurized caveolin 1-/- arteries. Conclusions- Caveolae play a critical role in protein targeting and preserving the close structural relationship between CaV3.2 and RyR needed to drive negative feedback control in resistance arteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call