Abstract

Although classic estrogen receptors (ER) have been proposed to mediate estradiol signaling, it has been relatively recently that mechanisms of trafficking these receptors have been elucidated. ERα is palmitoylated and associates with caveolin proteins to be targeted to the cell membrane. Caveolins are scaffold proteins that not only traffic ERα to the membrane but also are involved in establishing metabotropic glutamate receptor interactions that are necessary for activating G protein signaling. To demonstrate the role of caveolin proteins in regulating an estradiol-dependent behavior, sexual receptivity, we used small interfering RNA to knock down caveolin-1 (CAV1) expression in the arcuate nucleus of the hypothalamus. In CAV1 knockdown rats, membrane, but not intracellular levels of ERα, were significantly reduced. As expected, estrogenic stimulation of the arcuate nucleus of the hypothalamus to medial preoptic nucleus projection was abrogated in CAV1 knockdown rats, indicating that the membrane-initiated activation of this circuit was compromised. Moreover, estradiol-induced lordosis behavior that is dependent on activation of μ-opioid receptors in the medial preoptic nucleus was also significantly reduced. Thus, CAV1-mediated ERα trafficking to the cell membrane is required for estradiol activation of circuits underlying female sexual receptivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.