Abstract

Previous work in our laboratory has shown that stimulating D2 dopamine receptors in the central sublenticular extended amygdala (SLEAc) can render medial forebrain bundle (MFB) stimulation less rewarding. One of the many ways in which D2 stimulation could affect the activity status of SLEAc neurons is by indirectly blocking calcium ion (Ca2+) influx through CaV1.3 channels. He we directly investigate the effects of blocking CaV1.3 channels on the rewarding effect of MFB stimulation. In experiment one, CaV1.3 blockade with the phenylalkylamine verapamil (2.5 and 5.0μg) or the benzothiazepine diltiazem (5.0 and 10.0μg) did not significantly decrease MFB stimulation’s reward efficacy relative to injections of saline. However, there were indications of an unanticipated 24-h-delayed effect of the higher dose of diltiazem – injected ipsilateral to the stimulation site – on the stimulation pulse frequency required to maintain half-maximal response rates (“required frequency”). Experiment two focused on and tracked the time course of this effect. Injections of 10μg of diltiazem decreased required frequency significantly more than did saline injections 24h after injection but not immediately after injection. Required frequency values returned to baseline levels within 48h after injection. This time course is consistent with cellular processes that regulate the insertion of GABA-A receptors in neural membranes. GABA-A-mediated neural communication is implicated in maintaining basal forebrain medium spiny neurons in an excitable state. Therefore, these results may indicate that sustaining SLEAc neurons in an excitable state may be important for MFB stimulation to retain its rewarding properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.