Abstract

Balanced ranked-set sampling (RSS) offers improved statistical inference in situations where the units to be sampled can be ranked relative to each other prior to formal measurement. Recent work has shown that provided the ranking process is perfect, unbalanced RSS can do even better. In this article, we examine the performance of one unbalanced RSS technique when the ranking process is not perfect. Using an Ohio corn production data set, we show that median-based unbalanced RSS outperforms balanced RSS in estimating a population median if the rankings are nearly perfect. We also show, however, that median-based unbalanced RSS may perform extremely poorly when the ranking process is less than perfect. This effect is particularly pronounced when the variable of interest has a skewed distribution. We thus offer a note of caution for users of unbalanced RSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.