Abstract

This work wants to give a caution for monitoring the surface modification of dually emitted ZnSe quantum dots (QDs) by using time-resolved photoluminescence (PL). Aqueous ZnSe QDs have two emission bands: namely ZnSe band gap emission centered at 395 nm and ZnSe trap emission centered at 470 nm. By fitting the measured PL spectra by two peaks, serious overlapping of two emission bands can be found in the range of 360–430 nm. As a result, the measured PL lifetimes at 395 nm (the peak position of ZnSe band gap emission) is just an apparent value, composing of both ZnSe band emission (contribution proportion about 80%) and ZnSe trap emission (contribution proportion about 20%). Due to the much smaller PL lifetime of ZnSe band gap emission (less than 20 ns) than that of ZnSe trap emission (about 50–70 ns), the elevated contribution proportion of ZnSe band gap emission at improved QD surface modification will lead to the decreased average PL lifetime at 395 nm. This result is completely opposite to the traditional result where improved QD surface modification leads to increased PL lifetimes on the basis of single emitted QDs. Hence, when time-resolved PL is used for monitoring the surface modification of dually emitted QDs, the emission bands overlapping should be taken into consideration with caution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.