Abstract

The mechanical removal of bacteria is fundamental to the treatment of infected root canals, but complete sterilization of biofilms tends not to extend to uninstrumented areas. However, during electrical conduction to a root canal filled with a conductor, the higher impedance where the root canal is narrower generates Joule heat that may result in a large temperature increase and sterilization. The effect of a high-frequency electric current on the wall of a simulated narrow root canal was investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). Simulated root canals, 0.1 mm in diameter, were prepared in dentine blocks. The root canal wall was treated with Plank-Rychlo solution for 5 min to create a decalcified layer. The simulated root canal was filled with either saline or NaClO, and 150 or 225 V at 520 kHz was applied for 0 s, 1 s, or 5 s. As the conduction time increased, and when the saline was replaced with NaClO, the proportion with a flat decalcified surface decreased, dentinal tubules and a lava-like morphology were significantly more evident on SEM (p < 0.01), and EDS showed significant decreases in carbon and oxygen and increases in calcium (p < 0.01). It was concluded that filling uninstrumented root canals with NaClO and using electrical conduction for 5 s could incinerate and eliminate the organic material of the root canal wall. The application of high-frequency electric current may lead to the cure of many cases of persistent apical periodontitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call