Abstract

Caustics are formally singular structures that frequently form in collisionless media. The non-negligible velocity dispersion of dark matter particles renders their density finite. We evaluated the maximum density of the caustics within the framework of secondary infall model of formation of dark matter haloes. The result is then used to demonstrate that caustics can be probed by properly stacking the weak-lensing signal of about 600 haloes. CFHTLS accompanied by X-ray observations and the space-based experiments like SNAP or DUNE can provide us with the required statistics. The extension of our results to more realistic models including the effects of mergers is outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.