Abstract

Applications of the method of reflected caustics to the measurement of the J integral in ductile materials are reviewed. It is demonstrated, both numerically and experimentally, that the conditions for accurate interpretation of caustics on the basis of plane stress small scale yielding analyses are often overrestrictive. To overcome these restrictions, we used a three-dimensional, elastic-plastic finite-element calculation to analyze caustics formed by reflection of light from a particular test specimen. Experimental measurements on the same specimen confirm the numerically obtained results. The out-of-plane surface displacements, measured experimentally by interferometry, are in excellent agreement with the corresponding numerical results. In addition, the experimentally obtained caustics agree well with the numerically generated caustics. The excellent agreement between experiment and calculations demonstrates the accuracy of the numerical model and establishes confidence in the interpretation of caustics in the presence of both extensive plasticity and three dimensionality. The analysis of caustics as based on the three-dimensional calculation is applied to the direct optical measurement of the time history of the J integral in a dynamically loaded specimen. The specimen was loaded in a drop weight tower, and the caustics were photographed with a high speed camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.