Abstract

This paper studies blast-induced wing crack behavior in a dynamic–static superimposed stress field using high-speed photography in combination with the optical method of caustics. With a static–dynamic loading setup, four PMMA plate specimens with pre-existing cracks under different static loading and the same dynamic loading were tested to observe the mechanical characteristics and the kinematic characteristics of blast-induced wing cracks during the propagation process, including crack length, crack velocity and dynamic stress intensity factor (SIF) at the crack tip. The results show that the behavior of the blast-induced wing crack is affected by the explosion stress wave and initial static stress, and the initial static stress with the direction being perpendicular to the wing crack propagation direction hinders crack propagation. Furthermore, the boundary constraint condition of the specimen plays an important role on the behavior of the crack propagation in the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.