Abstract

BackgroundLatent class analysis (LCA) has been used extensively to identify (latent) phenotypes of childhood wheezing. However, the number and trajectory of discovered phenotypes differed substantially between studies.ObjectiveWe sought to investigate sources of variability affecting the classification of phenotypes, identify key time points for data collection to understand wheeze heterogeneity, and ascertain the association of childhood wheeze phenotypes with asthma and lung function in adulthood.MethodsWe used LCA to derive wheeze phenotypes among 3167 participants in the ALSPAC cohort who had complete information on current wheeze recorded at 14 time points from birth to age 16½ years. We examined the effects of sample size and data collection age and intervals on the results and identified time points. We examined the associations of derived phenotypes with asthma and lung function at age 23 to 24 years.ResultsA relatively large sample size (>2000) underestimated the number of phenotypes under some conditions (eg, number of time points <11). Increasing the number of data points resulted in an increase in the optimal number of phenotypes, but an identical number of randomly selected follow-up points led to different solutions. A variable selection algorithm identified 8 informative time points (months 18, 42, 57, 81, 91, 140, 157, and 166). The proportion of asthmatic patients at age 23 to 24 years differed between phenotypes, whereas lung function was lower among persistent wheezers.ConclusionsSample size, frequency, and timing of data collection have a major influence on the number and type of wheeze phenotypes identified by using LCA in longitudinal data.

Highlights

  • Latent class analysis (LCA) has been used extensively to identify phenotypes of childhood wheezing

  • Our results suggest that the number and nature of wheeze phenotypes from infancy to adolescence identified by using LCA are dependent on several factors, including sample size, frequency, timing and distribution of data collection time points, model dimensionality, and the combination of these factors

  • Transition analysis revealed that subjects assigned to the never or persistent wheeze phenotypes tend to stay in these phenotypes, whereas most of the switching goes on in the intermediate classes

Read more

Summary

Introduction

Latent class analysis (LCA) has been used extensively to identify (latent) phenotypes of childhood wheezing. Objective: We sought to investigate sources of variability affecting the classification of phenotypes, identify key time points for data collection to understand wheeze heterogeneity, and ascertain the association of childhood wheeze phenotypes with asthma and lung function in adulthood. Methods: We used LCA to derive wheeze phenotypes among 3167 participants in the ALSPAC cohort who had complete information on current wheeze recorded at 14 time points from birth to age 161⁄2 years. We examined the effects of sample size and data collection age and intervals on the results and identified time points. We examined the associations of derived phenotypes with asthma and lung function at age 23 to 24 years. Increasing the number of data points resulted in an increase in the optimal number of phenotypes, but an identical number of randomly selected follow-up points led to different solutions.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.