Abstract

This paper analyses the causes of the catastrophic failure of an earth dam that took place on 21 January 2001 during the first filling test in the NE of Spain (Altorricon village, Huesca Province). The San Juan reservoir, with a capacity of 850,000 m3, was built in 1999 on gypsiferous mantled pediment deposits overlying Tertiary dispersive clay sediments. The basin of the reservoir was excavated in the alluvial cover and Tertiary bedrock. An earth dam was constructed on the pediment surface along the perimeter of the artificial basin. The dam has a core of compacted clay material derived from the excavation, which is indented 1 m in the Tertiary shales of the bedrock, cutting the highly pervious alluvial mantle. Field observations, analysis of the basin and dam materials and eyewitnesses accounts have helped to infer the processes involved in the failure of the earth dam. These processes include (1) subsidence and ravelling (suffosion) processes induced by the dissolution of the 4-m-thick detrital cover with a gypsum content of around 40%; (2) piping processes affecting the embankments and core of the dam built with dispersive clays that have high exchangeable sodium percentage (ESP) and show active pipes; and (3) water circulation through biogenic burrows in the pediment deposits. This case study demonstrates the frequently hidden limitations that evaporite sediments and dispersive clay materials pose to the construction of dams. It also shows that highly permeable surficial deposits should be stripped before the construction of the dam structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call