Abstract
The U.S. coastlines have experienced rapid increases in occurrences of High Tide Flooding (HTF) during recent decades. While it is generally accepted that relative mean sea level (RMSL) rise is the dominant cause for this, an attribution to individual components is still lacking. Here, we use local sea-level budgets to attribute past changes in HTF days to RMSL and its individual contributions. We find that while RMSL rise generally explains > 84% of long-term increases in HTF days locally, spatial patterns in HTF changes also depend on differences in flooding thresholds and water level characteristics. Vertical land motion dominates long-term increases in HTF, particularly in the northeast, while sterodynamic sea level (SDSL) is most important elsewhere and on shorter temporal scales. We also show that the recent SDSL acceleration in the Gulf of Mexico has led to an increase of 220% in the frequency of HTF events over the last decade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.