Abstract
Invertebrate drift, the downstream transport of aquatic invertebrates, is a fundamental ecological process in streams with important management implications for drift-feeding fishes. Despite long-standing interest, many aspects of drift remain poorly understood mechanistically, thereby limiting broader food web applications (e.g., bioenergetics-based habitat models for fish). Here, we review and synthesize drift-related processes, focusing on their underlying causes, consequences for invertebrate populations and broader trophic dynamics, and recent advances in predictive modelling of drift. Improving predictive models requires further resolving the environmental contexts where drift is driven by hydraulics (passive drift) versus behaviour (active drift). We posit this can be qualitatively inferred by hydraulic conditions, diurnal periodicity, and taxa-specific traits. For invertebrate populations, while the paradox of population persistence in the context of downstream loss has been generally resolved with theory, there are still many unanswered questions surrounding the consequences of drift for population dynamics. In a food web context, there is a need to better understand drift-foraging consumer–resource dynamics and to improve modelling of drift fluxes to more realistically assess habitat capacity for drift-feeding fishes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.