Abstract
Causality extraction from natural language texts is a challenging open problem in artificial intelligence. Existing methods utilize patterns, constraints, and machine learning techniques to extract causality, heavily depending on domain knowledge and requiring considerable human effort and time for feature engineering. In this paper, we formulate causality extraction as a sequence labeling problem based on a novel causality tagging scheme. On this basis, we propose a neural causality extractor with the BiLSTM-CRF model as the backbone, named SCITE (Self-attentive BiLSTM-CRF wIth Transferred Embeddings), which can directly extract cause and effect without extracting candidate causal pairs and identifying their relations separately. To address the problem of data insufficiency, we transfer contextual string embeddings, also known as Flair embeddings, which are trained on a large corpus in our task. In addition, to improve the performance of causality extraction, we introduce a multihead self-attention mechanism into SCITE to learn the dependencies between causal words. We evaluate our method on a public dataset, and experimental results demonstrate that our method achieves significant and consistent improvement compared to baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.