Abstract

Bond graph (BG) is an effective tool for modeling complex systems and it has been proven useful for fault detection and isolation (FDI) for continuous systems. BG provides the causal relations between system's variables which allow FDI algorithms to be developed systematically from the graph. In the same spirit, Hybrid bond graph (HBG) is a BG-based modeling approach which provides an avenue to model complex hybrid systems. However, due to mode-varying causality properties of HBG, HBG has not been efficiently-exploited for fault diagnosis. In this work, a comprehensive study on the HBG from FDI viewpoints is presented. Some properties pertaining to the HBG are gained in the study. Based on these findings, a causality assignment procedure and a model approximation technique are developed to achieve a HBG with a desirable causality assignment that leads a unified description of system's behavior. These results lay a foundation for quantitative FDI design for complex hybrid systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.