Abstract

AbstractIn order to engineer new materials, structures, systems, and processes that address persistent challenges, engineers seek to tie causes to effects and understand the effects of causes. Such a pursuit requires a causal investigation to uncover the underlying structure of the data generating process (DGP) governing phenomena. A causal approach derives causal models that engineers can adopt to infer the effects of interventions (and explore possible counterfactuals). Yet, and for the most part, we continue to design experiments in the hope of empirically observing engineered intervention(s). Such experiments are idealized, complex, and costly and hence are narrow in scope. On the contrary, a causal investigation will allow us to peek into the how and why of a DGP and provide us with the essential means to articulate a causal model that accurately describes the phenomenon on hand and better predicts the outcome of possible interventions. Adopting a causal approach in engineering is perhaps more warranted than ever—especially with the rise of big data and the adoption of artificial intelligence (AI); wherein AI models are naivety presumed to describe causal ties. To bridge such knowledge gap, this primer presents fundamental principles behind causal discovery, causal inference, and counterfactuals from an engineering perspective and contrasts that to those pertaining to correlation, regression, and AI.This article is categorized under: Application Areas > Industry Specific Applications Algorithmic Development > Causality Discovery Application Areas > Science and Technology Technologies > Machine Learning

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call