Abstract

2-Methylisobornel (MIB) is one of the most widespread and problematic biogenic compounds causing taste-and-odor problems in freshwater. To investigate the causes of MIB production and develop models to predict the MIB concentration, we have applied empirical dynamic modeling (EDM), a nonlinear approach based on Chaos theory, to the long-term water quality dataset of Kamafusa Reservoir in Japan. The study revealed the dynamic nature of MIB production in the reservoir, and determined causal variables for MIB production, including water temperature, pH, transparency, light intensity, and Green Phormidium. Moreover, EDM established that the system is three-dimensional, and the approach found elevated nonlinearity (from 1.5 to 3) across the whole study period (1996–2015). By taking only one or two candidate predictors with varying time lags, multivariate models for predicting MIB production (best model: r = 0.83, p < 0.001, root mean squared error = 3.1 ng/L) were successfully established. The modeling approach used in this study is a powerful tool for causality identification and odor prediction, thus making important contributions to reservoir management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call