Abstract

Neurodegenerative diseases are incurable conditions that lead to gradual and progressive deterioration of brain function in patients. With the aging population, the prevalence of these diseases is expected to increase, posing a significant economic burden on society. Imaging techniques play a crucial role in the diagnosis and monitoring of neurodegenerative diseases. This study utilized a two-sample Mendelian randomization (MR) analysis to assess the causal relationship between different imaging-derived phenotypes (IDP) in the brain and neurodegenerative diseases. Multiple MR methods were employed to minimize bias and obtain reliable estimates of the potential causal relationship between the variable exposures of interest and the outcomes. The study found potential causal relationships between different IDPs and Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and frontotemporal dementia (FTD). Specifically, the study identified potential causal relationships between 2 different types of IDPs and AD, 8 different types of IDPs and PD, 11 different types of imaging-derived phenotypes and ALS, 1 type of IDP and MS, and 1 type of IDP and FTD. This study provides new insights for the prevention, diagnosis, and treatment of neurodegenerative diseases, offering important clues for understanding the pathogenesis of these diseases and developing relevant intervention strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.