Abstract
The explosive increase of news data on the web has created a mass of causal knowledge, which explains the causal relation between two events that effect event will occur following the occurrence of cause event. Analysis of causal knowledge has gain lots of attentions due to its widespread applications, such as question answering, event prediction, generating future scenarios, and commonsense causal reasoning. However, few researches are based on Chinese news corpus, and no effective causal template is proposed for extracting Chinese causal relationship. Therefore, the method for extracting causal relation and building network of causal events from Chinese news corpus is proposed. First, we propose a method to obtain complete cue phrases set and present four common causal patterns to extract causal relations. And then we merge the same events by similarity calculation of causal events. At last, a network of causal events is constructed. Experiments on the datasets show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Social and Humanistic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.