Abstract

BackgroundSelection bias and unmeasured confounding are fundamental problems in epidemiology that threaten study internal and external validity. These phenomena are particularly dangerous in internet-based public health surveillance, where traditional mitigation and adjustment methods are inapplicable, unavailable, or out of date. Recent theoretical advances in causal modeling can mitigate these threats, but these innovations have not been widely deployed in the epidemiological community.ObjectiveThe purpose of our paper is to demonstrate the practical utility of causal modeling to both detect unmeasured confounding and selection bias and guide model selection to minimize bias. We implemented this approach in an applied epidemiological study of the COVID-19 cumulative infection rate in the New York City (NYC) spring 2020 epidemic.MethodsWe collected primary data from Qualtrics surveys of Amazon Mechanical Turk (MTurk) crowd workers residing in New Jersey and New York State across 2 sampling periods: April 11-14 and May 8-11, 2020. The surveys queried the subjects on household health status and demographic characteristics. We constructed a set of possible causal models of household infection and survey selection mechanisms and ranked them by compatibility with the collected survey data. The most compatible causal model was then used to estimate the cumulative infection rate in each survey period.ResultsThere were 527 and 513 responses collected for the 2 periods, respectively. Response demographics were highly skewed toward a younger age in both survey periods. Despite the extremely strong relationship between age and COVID-19 symptoms, we recovered minimally biased estimates of the cumulative infection rate using only primary data and the most compatible causal model, with a relative bias of +3.8% and –1.9% from the reported cumulative infection rate for the first and second survey periods, respectively.ConclusionsWe successfully recovered accurate estimates of the cumulative infection rate from an internet-based crowdsourced sample despite considerable selection bias and unmeasured confounding in the primary data. This implementation demonstrates how simple applications of structural causal modeling can be effectively used to determine falsifiable model conditions, detect selection bias and confounding factors, and minimize estimate bias through model selection in a novel epidemiological context. As the disease and social dynamics of COVID-19 continue to evolve, public health surveillance protocols must continue to adapt; the emergence of Omicron variants and shift to at-home testing as recent challenges. Rigorous and transparent methods to develop, deploy, and diagnosis adapted surveillance protocols will be critical to their success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.