Abstract
Randomized controlled trials (RCTs) are the gold standard for making causal inferences, but RCTs are often not feasible in addiction research for ethical and logistic reasons. Observational data from real‐world settings have been increasingly used to guide clinical decisions and public health policies. This paper introduces the potential outcomes framework for causal inference and summarizes well‐established causal analysis methods for observational data, including matching, inverse probability treatment weighting, the instrumental variable method and interrupted time‐series analysis with controls. It provides examples in addiction research and guidance and analysis codes for conducting these analyses with example data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.