Abstract
Longitudinal cohort studies, which follow a group of individuals over time, provide the opportunity to examine causal effects of complex exposures on long-term health outcomes. Utilizing data from multiple cohorts has the potential to add further benefit by improving precision of estimates through data pooling and by allowing examination of effect heterogeneity through replication of analyses across cohorts. However, the interpretation of findings can be complicated by biases that may be compounded when pooling data, or, contribute to discrepant findings when analyses are replicated. The "target trial" is a powerful tool for guiding causal inference in single-cohort studies. Here we extend this conceptual framework to address the specific challenges that can arise in the multi-cohort setting. By representing a clear definition of the target estimand, the target trial provides a central point of reference against which biases arising in each cohort and from data pooling can be systematically assessed. Consequently, analyses can be designed to reduce these biases and the resulting findings appropriately interpreted in light of potential remaining biases. We use a case study to demonstrate the framework and its potential to strengthen causal inference in multi-cohort studies through improved analysis design and clarity in the interpretation of findings. Special Collection: N/A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.