Abstract

In our natural environment the senses are continuously flooded with a myriad of signals. To form a coherent representation of the world, the brain needs to integrate sensory signals arising from a common cause and segregate signals coming from separate causes. An unresolved question is how the brain solves this binding or causal inference problem and determines the causal structure of the sensory signals. In this functional magnetic resonance imaging (fMRI) study human observers (female and male) were presented with synchronous auditory and visual signals at the same location (i.e., common cause) or different locations (i.e., separate causes). On each trial, observers decided whether signals come from common or separate sources(i.e., "causal decisions"). To dissociate participants' causal inference from the spatial correspondence cues we adjusted the audiovisual disparity of the signals individually for each participant to threshold accuracy. Multivariate fMRI pattern analysis revealed the lateral prefrontal cortex as the only region that encodes predominantly the outcome of observers' causal inference (i.e., common vs separate causes). By contrast, the frontal eye field (FEF) and the intraparietal sulcus (IPS0-4) form a circuitry that concurrently encodes spatial (auditory and visual stimulus locations), decisional (causal inference), and motor response dimensions. These results suggest that the lateral prefrontal cortex plays a key role in inferring and making explicit decisions about the causal structure that generates sensory signals in our environment. By contrast, informed by observers' inferred causal structure, the FEF-IPS circuitry integrates auditory and visual spatial signals into representations that guide motor responses.SIGNIFICANCE STATEMENT In our natural environment, our senses are continuously flooded with a myriad of signals. Transforming this barrage of sensory signals into a coherent percept of the world relies inherently on solving the causal inference problem, deciding whether sensory signals arise from a common cause and should hence be integrated or else be segregated. This functional magnetic resonance imaging study shows that the lateral prefrontal cortex plays a key role in inferring the causal structure of the environment. Crucially, informed by the spatial correspondence cues and the inferred causal structure the frontal eye field and the intraparietal sulcus form a circuitry that integrates auditory and visual spatial signals into representations that guide motor responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call