Abstract
If a vaccine does not protect individuals completely against infection, it could still reduce infectiousness of infected vaccinated individuals to others. Typically, vaccine efficacy for infectiousness is estimated based on contrasts between the transmission risk to susceptible individuals from infected vaccinated individuals compared with that from infected unvaccinated individuals. Such estimates are problematic, however, because they are subject to selection bias and do not have a causal interpretation. Here, we develop causal estimands for vaccine efficacy for infectiousness for four different scenarios of populations of transmission units of size two. These causal estimands incorporate both principal stratification, based on the joint potential infection outcomes under vaccine and control, and interference between individuals within transmission units. In the most general scenario, both individuals can be exposed to infection outside the transmission unit and both can be assigned either vaccine or control. The three other scenarios are special cases of the general scenario where only one individual is exposed outside the transmission unit or can be assigned vaccine. The causal estimands for vaccine efficacy for infectiousness are well defined only within certain principal strata and, in general, are identifiable only with strong unverifiable assumptions. Nonetheless, the observed data do provide some information, and we derive large sample bounds on the causal vaccine efficacy for infectiousness estimands. An example of the type of data observed in a study to estimate vaccine efficacy for infectiousness is analyzed in the causal inference framework we developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.